US006850932B2

a2 United States Patent
de Judicibus

(10) Patent No.:
5) Date of Patent:

US 6,850,932 B2
Feb. 1, 2005

(59 METHOD, SYSTEM, AND PROGRAM FOR
MERGING QUERY SEARCH RESULTS
(75) Inventor: Dario de Judicibus, Rome (IT)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 10/449,134
(22) Filed: May 29, 2003
(65) Prior Publication Data
US 2003/0200206 Al Oct. 23, 2003
Related U.S. Application Data
(62) Division of application No. 09/696,881, filed on Oct. 26,
2000, now Pat. No. 6,651,054.
(30) Foreign Application Priority Data
Oct. 30,1999 (GB) .eoooviiviiiiiiiiiiiciieeiiecce, 9925741
(51) Int. CL7 oo, GO6F 17/30
(52) US.CL ... 707/3; 707/4; 707/5; 707/6;
707/10
(58) Field of Searchc.cccoccoceenennee 707/2, 3,5, 6,
707/10, 4, 104
(56) References Cited
U.S. PATENT DOCUMENTS
5,426,781 A * 6/1995 Kaplanetal. 707/4
5,539,903 A * 7/1996 Kaplan et al. 707/103 R
5,630,122 A * 5/1997 Kaplan etal. 707/4
5,710,900 A * 1/1998 Anand et al. 345/764
5,721,901 A * 2/1998 Banning et al. 707/4
5,845,278 A * 12/1998 Kirsch et al.c..... 707/3
5,852,823 A * 12/1998 De Bonetccveeennnen 707/6
5,899,999 A * 5/1999 De Bonet 707/104.1
5,983,216 A * 11/1999 Kirsch et al. ... 707/2
5,983,237 A * 11/1999 Jain et al. 707/104.1
6,018,733 A * 1/2000 Kirsch et al.c.e.... 707/3

6,651,054 B1 * 11/2003 de Judicibus 707/3
2001/0013036 Al * 8/2001 Judicibuscccccevenenenn. 707/5

OTHER PUBLICATIONS

Wu et al.,, “Shadow document methods of results merging”,
ACM, pp. 1067-1072, year 2004.*

Si et al,, “A language modeling framework for resource
selection and result merging”, ACM, pp. 391-397, year
2002.*

Rasolofo et al., “Approaches to collection selection and
results merging for distributed information retrieval” ACM,
pp. 191-198, year 2001.*

Voorhees et al., “Multiple search engines in database merg-
ing”, ACM, pp. 93-102, year 1997.*

Siet al.,, “Using sampled data and regression to merge search
engine results”, ACM, pp. 19-26, years 2002.*

Martinez, Michael J. “Web Goes Graphic. New Visual
Interface Technology Dazzles Users.” ABCNEWS.com [on-
line] [retrieved on Sep. 17, 2002]. Retrieved from the
Internet <URL:http//www.plumbdesign.com.

(List continued on next page.)

Primary Examiner—Jean M. Corrielus
(74) Antorney, Agent, or Firm—David W. Victor; Konrad,
Raynes & Victor

57 ABSTRACT

A system for interacting with a database report is disclosed.
The database is responsive to a query to produce an asso-
ciated report comprising one or more objects, each object
comprising a plurality of attributes. The system comprises
means for storing one or more reports from respective
database queries; and means for rendering at least one object
from the stored reports. A user interface enables a user to
navigate through objects composing the stored reports to
select an object; select one or more attributes of the selected
object and determine a value of a selected attribute to be
used as a condition in a subsequent database query. A query
generator receives the selected attribute values and generates
the subsequent database query.

37 Claims, 5 Drawing Sheets

46

Atfr ID/Value/State

Select Prev/Next Object
Select Prev/Next Attribute

Navigator

Get Attr D/ Value/State
Set Attribute State

-

-’

Select AttrA, AttrB, AttrC, 56
fromRelationD, Relationl

—
Get Current Object/Level

Renderer

1 ‘}2

Result Merge

ResultSet #1

0Obj #1| Level | NextObj | Prev0bj

where Cond1, Cond?2
\‘{ SQL Generator

0bj #2

W] >
7 sl ey 42y 2

Language |-
Interface

atabase \
Relation #1]

A |
| I

|A_ﬂr #1|....

Relation #x]
At #m (Attr #11-- [Attr #nl

US 6,850,932 B2
Page 2

OTHER PUBLICATIONS

“Web Sightings. An Idiosyncratic List of Some of our
Favorite On-line Haunts.” The New Yorker, May 29, 2000
[online], [retrieved on Sep. 17, 2002]. Retrieved from the
Internet <URL:http://www. plumbdesign.com.

Mirapaul, Matthew. “Choose a Word and Float and Idea.”
The New York Times, Mar. 12, 1998 [online] [retrieved on
Sep. 17, 2002]. Retrieved from the Internet <URL "http://
www.plumbdesign.com.

* cited by examiner

U.S. Patent Feb. 1, 2005 Sheet 1 of 5 US 6,850,932 B2

o

—]

=2

L

S = o~

O 9

| -
=)
-

]

<t .

— D

L

10

12

US 6,850,932 B2

Sheet 2 of 5

Feb. 1, 2005

U.S. Patent

U My ~TT# | [Wa Thy —1# IV .
e X U0eRy 17 T0EPY ¢ I
\ \ eseqereq
\ : \ adepa)u)
% ze— sewgogarngao | 9¢ | ofendue] |— gy
ry \.\\\A/ |einleN
y L T Rieng T8
06— fienpgg & _\ indu J8sn —g¢
s fo# oD S <
A
z# 190 \ | A# 1esunsay 103e13u8) T0S /
......) 1 / Zpu0g ‘Tpuoy 8laym
| Juonejay ‘quorelsywol
[qonald | lqomxeN | 18887 [T# [q0 [/ | T# 18SUNsay 9¢ Ny ‘gmy ‘YIny 199188
9315\ 2nsay ™
/ - v |aAg7/108[g() JuaLIng 189
4 1 Jaiapuay P
1 aes ainguny 108
alelS/anjen/dl 1y 199 wmm_%« %_M_wﬁ,u_m %%m_mm
; ajels/an|en/q| 1y
—] I0Je3IAeN oy

US 6,850,932 B2

Sheet 3 of 5

Feb. 1, 2005

U.S. Patent

76—

ON

01e8s puj

6 914
¢ [9A07 &
2 V_Lf 9
[18887 +——— MHIV mbhvn

/
86

(6

7 9l

suoiyIpuod A|ddy

;SHUIRJISU0D
a119ads Auy

96

ajesd

IneN

A

h

Kianb fe|dsiq

A

A

v

A1anb Jwgng

— 06

y

N

J2183S LR)S

US 6,850,932 B2

Sheet 4 of 5

Feb. 1, 2005

U.S. Patent

9 Ol
6 G Jageuey € | W | 9€ | 1990LS | 98T-¢ | Snaep ‘zynys
¢l G 1alyaly § W | Ty | MZT0169 | 800-G | 1yJ| ‘ojowou]
¢l G Jageue} ¢ | W | 16 | HEZIAID | CT/-8 | audid ‘ulep
g £ slleweds | v | 4| LC | Q960419 | 69L-G | euel ‘lney
fiowuag | Ayanaag | uomisod |[IMS LI | XaS | a3y | uawpedaq | Jaquny u0sJag
G Ol
6 G JaSeuepy € | W | 9€ | 19901ZS | 981-¢ | snduel ‘zynys
¢l G NGB G W | Tv | MCI0L6D | 800-G | 1ydf ‘ojowouy
8 g v sieads | € | W | 2€ @HECIALD | 6008 | Jaled SIHNY
G \ ¢ 1S1|e193dS b 1| L \%mohzw 69/-G | euel ‘llisAey
fyoluag | fuunoag | uolIsod |1IMS LI | X8S | 8y |puawpedaq | Jaquny uos.iad

¢9

_
09

US 6,850,932 B2

Sheet 5 of 5

Feb. 1, 2005

U.S. Patent

76—

| 8661 aunf
=Omum sl e
il = _ 1apidg
_ GGE |
Uelia{ |

9|qe|leAy

1e3)
& I8PON
@ seuss
@ pueg

| o yoal | 8oud | suondo | [8po _ 3oje1en

X1 angojejen ,,SI1e)aWoy

8661 dunr | s|qel(eay

_ 6661 Jea)
_ 1apidg |_[3PoW
GGE 4 SLIEN

_ lelaj| pueig

TE__ :oﬁg 391ld _m:o_ao [9pO _mo_smo_

X[] angojelen ,,SIeDaLWoH

¢S

8 9l

£ Il

US 6,850,932 B2

1

METHOD, SYSTEM, AND PROGRAM FOR
MERGING QUERY SEARCH RESULTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a divisional application of and
claims priority to and commonly-assigned application Ser.
No. 09/696,881, now U.S. Pat. No. 6,651,054 titled
“METHOD, SYSTEM, AND PROGRAM FOR MERGING
QUERY SEARCH RESULTS,” filed on Oct. 26, 2000, by
Dario de Judicibus, which patent application claims priority
from the commonly assigned United Kingdom Patent Appli-
cation entitled “Interaction With Database Reports™”, having
United Kingdom Patent Application Serial No. 9925741.2,
filed on Oct. 30, 1999, by Dario de Judicibus, each of which
is incorporated herein by reference in its entirety.

1. FIELD OF INVENTION

The present invention relates to a system cooperable with
a database which allows a user to interact with a database
report to refine a database query.

2. BACKGROUND OF THE INVENTION

Adatabase can be considered as a multidimensional space
(mD-space) where each axis corresponds to an attribute and
each object occupies a point in that space. Attribute values
may be finite or infinite; continuous, discrete ordinal or
discrete nominal. Take, for example, an object 10 as shown
in FIG. 1, where each vertex 12 represents one of five
attributes. In this case, the object has a value for each
attribute, as shown by the lines 14 linking the object to each
of its attribute values. However, it should be seen that
objects need not be valued for all attributes and this can be
represented by omitting a line 14 for such null attributes.

Conventional relational databases store information in a
plurality of tables (relations) with each table containing one
or more objects and each object containing one or more
attributes. Selecting objects in a database corresponds to
identifying a subset of objects in the mD-space by specify-
ing one or more conditions within a query. A common form
of specifying a query on such databases employs a Struc-
tured Query Language (SQL). SQL queries generally take
the form:

Select Attributes from Relations where Conditions

Where a database comprises many tables linked together
through a complex network of index fields, a database query
may become quite complex involving, for example, INNER-
JOIN expressions. Often applications which link to data-
bases do not expose a user to having to specify a complete
SQL query, rather they take input from the user in a simple
manner, for example, getting the name of the person they
wish to find using a text entry field. This Condition is then
inserted into a query where the Attributes which are to form
the resultant report and the Relations from which informa-
tion is drawn for the query are pre-defined by a programmer.

The resultant report is itself usually a relation, again
comprising a number of objects conforming to the condi-
tions and having the attributes specified in the query. The
relation is then rendered so that it can be displayed on the
screen in a suitable manner for example as a table or as a
graph.

The resultant report can be thought of as a notional curve
in the mD-space connecting all the objects 10, . . . 10,
belonging to the subset identified by the query, FIG. 2, and
moving through the report is equivalent to navigating along

10

15

20

25

30

35

40

45

50

55

60

65

2

that curve. Nonetheless, because the report is static, should
the user not find the required information, they must back-
track to amend the original query before being presented
with a new report.

It will be seen, however, that the user often does not have
all the right information to define the best possible query
initially. Thus, the user submits a query, looks at the results,
modifies the query, gets the new result, and so forth. So, to
get closer to the desired result requires resubmitting another
query which means losing time and it also means that both
the original query and the original report are lost.

Query-by-Example (QBE) is a well known method for
constructing a database query graphically, again removing
the user from needing to learn and write SQL. Using QBE,
a user essentially draws an example table comprising the
attributes involved in the query and sets attribute values
according to the required conditions. The example table is
then analyzed, a structured query generated and fed to the
database to produce a report.

It is known using a QBE interface to take a report
resulting from a first query and use this report in turn as an
input for generating a second or subsequent query, for
example, Information Server produced by Verity, Inc. For
more information see “verity.com”. Each subsequent report,
however, still replaces a both previous query and its asso-
ciated report when generating a new report.

An attempt to move within the results of one query to
form another query has been proposed in a visual thesaurus
produced by Plumb Design, Inc. For more information see
“plumbdesign.com/thesaurus/”. It should be seen, however,
that in this case that the report only includes one and only
one attribute type, ie synonym, and the query one and only
one condition, ie the search word.

It is an object of the present invention, to enable a user to
locally move around a specific object in a multi-attribute
type database space, according to one or more selected
conditions, to provide fine tuning of the result obtained in a
report.

SUMMARY OF THE PREFERRED
EMBODIMENTS

Accordingly, the present invention provides a system
cooperable with a database which allows a user to interact
with a database report to refine a database query according
to a system cooperable with a database which is responsive
to a query to produce an associated report comprising one or
more objects, each object comprising a plurality of
attributes, said system comprising: means for storing one or
more reports from respective database queries; means for
rendering at least one object from said stored reports; means,
responsive to user interaction, for navigating through objects
composing said stored reports to select an object; means,
responsive to user interaction, for selecting one or more
attributes of said selected object; means, responsive to user
interaction, for determining a value of a selected attribute to
be used as a condition in a subsequent database query; and
means, responsive to said selected attribute values, for
generating said subsequent database query.

The preferred embodiments allow a user to select an
object in the database space laying on a report curve, and
allows the user to move directly from there in the database
space, without requiring the user to submit another query to
create another curve in that space.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments are described with reference to
the accompanying drawings, in which:

US 6,850,932 B2

3

FIG. 1 illustrates an object in multidimensional space;

FIG. 2 illustrates a number of such objects in multi-
dimensional space linked by a notional curve;

FIG. 3 is a block diagram of a system according to the
invention;

FIG. 4 is a flow diagram illustrating the general operation
of the system of FIG. 3;

FIGS. 5 and 6 illustrate the display rendered by a first
embodiment of a renderer component of the system accord-
ing to the preferred embodiments;

FIGS. 7 and 8 illustrate the display rendered by a second
embodiment of a renderer component of the system accord-
ing to the preferred embodiments;

FIG. 9 illustrates the operating sequence and typical
navigation path; and

FIG. 10 illustrates a number of objects in multi-
dimensional space.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring now to FIG. 3 which shows a block diagram of
a system enabling a user to interact with a database report
and so refine a query according to a preferred embodiment
of the invention. This embodiment is described for simplic-
ity in terms of Java Beans, although it will be seen that the
invention is not limited to this nor indeed object oriented
languages in general nor strictly to the structure shown.

In describing the operation of the system, for clarity,
reference will be made to the operation of classes whereas
it is to be understood that it is instances of such classes
which execute at run time.

UK Application No. GB9814339.9 and corresponding
U.S. application Ser. No. 09/342,775, now U.S. Pat. No.
6,441,541, which applications are incorporated herein by
reference in their entirety, describe a set of Java beans one
of which, DBQuery 30, connects via a database driver 32 to
a relational database 34. The relational database 34 com-
prises a plurality of tables 36, Relation #1 . . . #x, each of
which store a number of attributes for a number of objects.

DBQuery 30 comprises a number of properties including
the address and type of the database and any username and
password required to access the database 34. From the point
of view of the present invention, two properties are relevant:
Query and DBResultSet. DBQuery 30 also exposes get and
set methods enabling its properties to be read and, where
possible, written by other objects.

In the present embodiment, a text entry field 38 receives
user input directly defining an initial SQL query—SQL
Query #1. Where the user is not expected to be familiar with
such query languages, user input can be via a natural
language interface 40, which receives input, for example,
“Get me all red 4 wheel drive cars in your catalogue”, and
converts this to an initial SQL query.

Again, it should be seen that the present embodiment is
described in relation to SQL and relational databases for
exemplary purposes only, and it will be seen that the
invention is applicable to any means for querying any
database. For example, initial input could be made from a
QBE type interface or indeed initial input might be limited
to only specifying conditions for a limited number of
attributes with the remainder of the query being pre-defined
or built automatically.

In any case, initial user input 38 is used to set the Query
attribute of DBQuery 30. This causes DBQuery 30 to link to

10

15

20

25

30

35

40

45

50

55

60

65

4

the database 34 and generate a report which is returned as
DBResultSet. A results merging object 42 listens for changes
in DBResultSet. In response to an initial query causing a
change in DBResultSet, the results merging object 42 simply
stores DBResultSet and calculates a number of additional
attributes for each object of the result set. In this case,
because the result set is from an initial query, a level attribute
for each object is set to 1. Each object also forms part of a
doubly linked chain having a NextObj and PrevObj attribute
pointing to the next and previous objects in the result set.

A renderer 44 is connected to the results merging object
42. The renderer 44 also listens for changes either in
DBResultSet within DBQuery 30 or in the merged results
within the results merging object 42. Responsive to such
changes the renderer re-displays the merged results set.

In a first embodiment, FIG. 5, the result set is displayed
as a table; and in a second embodiment, FIG. 7, where one
of the attributes is a multimedia video, the display is more
dedicated, where the attributes are displayed across a num-
ber of tabbed pages—Catalog, Model, Options etc. In the
first embodiment, all objects from the initial result set are
displayed simultaneously, whereas in the second embodi-
ment only one object at a time is displayed. It will be seen
that an almost infinite number of ways of rendering the result
set can be used, and in another example, the paradigm of
FIG. 1 can also be used to display result set objects one at
a time.

A navigator 46 is cooperable with the renderer 44. It
assumes that the renderer 44 implements an interface
whereby the navigator, in response to user interaction, can
cause the renderer to: select any, the previous or next object;
select any, the previous or next attribute within an object;
and to set a selected object’s selected attribute state, as will
be explained later.

In the first renderer embodiment, the navigator is not
visible at run time, and the user appears to interact directly
with the displayed table. This may mean that the renderer,
which occupies the area of the display with which the user
interacts, needs to be adapted to relay user keystrokes and
mouse movement to the navigator which in turn processes
these interactions as if the navigator were receiving inter-
action directly. In any case, the navigator 46 is responsive to
the user moving the up and down cursor keys to select the
previous and next objects and moving the left and right
cursor keys to select the previous and next objects. (Where
the first or last objects or attributes are already selected, the
renderer can either wrap around or remain at the selected
object/attribute.) The user can also move the mouse and
randomly, rather than sequentially, select objects and
attributes. In any case, the selected object attribute is appro-
priately highlighted by the renderer 44 to provide feedback
to the user.

In the second embodiment, FIG. 7, the navigator appears
as a tool bar 50 within (or adjacent) the rendered display. By
selecting the arrows of the tool bar 50, the renderer is caused
to display the attributes of the first, previous, next or last
result set object respectively. (The buttons 51 are used to
play the multimedia video of the car.) The user may also
select either the displayed entry fields 52, the display area 54
for the video, or move between tabbed pages to select other
attributes.

Where a renderer 44 uses the paradigm of FIG. 1, arrow
buttons (not shown) such as those of FIGS. 7 and 8, can
again be used to cause the renderer to display any object in
the manner shown. Again either cursor movement or mouse
selection can be used to select a vertex 12 and move between
vertices, with the selected vertex being highlighted as appro-
priate.

US 6,850,932 B2

5

In any case, the user may now decide to refine the search.
In the case of FIG. 5, the user is looking for a person in their
company who has specific characteristics. The user first
defines a query including the conditions related to the
characteristics they are looking for. The user may also define
the attributes needed to contact that person to be included in
the report or these may be pre-defined. Where a natural
language interface is used, the query might be of the form:

Look for all people in any department
with an IT skill equal or greater than 3,
a security level greater than 2,

and employed by at least 5 years in our company
and the report would be as shown in FIG. 5.

Now, since security is more important to this user than IT
skill, it looks like Peter Curtis is the person needed.
Typically, the user tries to contact him by phone at tie-line
8709 but he doesn’t answer. The user therefore needs to
contact another person this department hoping he or she may
be able to help. In a conventional system, the user has to
submit another query, of the form:

Look for all people in department G1Y123H

and a security level greater than 2

By doing this, however, both the original query and its
result are lost, or the user needs to open another window
which in turn might be slow. Furthermore, if the people
found in the second search are not helpful, the user needs to
repeat the whole process for another candidate, for example
Maria Ravelli.

In the first embodiment, however, the user simply selects
Peter Curtis inside the rendered report itself, and then selects
the Department attribute as explained above. The navigator
is then further responsive either to a designated keystroke or
to a mouse button being pressed to change the state of the
selected object’s selected attribute. This state change is
indicated by highlighting the locked attribute, in this case
with a lock icon 60, to indicate the user has locked this
attribute. This locking is communicated between the navi-
gator 46 and an SQL generator 56, FIG. 3, by transmitting
the attribute identity, its value and optionally its state, in this
case “locked”.

By extending the navigator interface to read user key-
board input when an attribute has been selected, the attribute
value for the locked attribute can be input directly and so can
be adjusted away from the object’s attribute value in the
result set before being communicated to the SQL generator
56. (This is course does not actually change the attribute
value stored within the result merging object 42.

The user continues by selecting the Security attribute.
Again, the navigator responds either to a designated key-
stroke or to a mouse button being pressed to change the state
of security attribute. In this case, the user “conditionally
locks” this attribute, that is the user wishes to use the same
criterion for this attribute as in the query associated with the
selected object. The conditional locking is highlighted with
a differently coloured lock icon 62, although it should be
seen that any suitable highlighting mechanism can be used.
This conditional locking is again communicated between the
navigator 46 and the SQL generator 56 by transmitting the
attribute identity, optionally its value and optionally its state,
in this case “conditionally locked”. (If only the identity is
transmitted, then the SQL generator will know a conditional
lock has been set.)

It will be seen that if the attribute selected for conditional
locking is not a condition of the original query, then con-
ditional locking will not be possible and an indication of
such needs to be provided to the user.

10

15

20

25

30

35

40

45

50

55

60

65

6

Note that the user does not need to specify again that
security must be greater than 2, but the conditional lock is
a lock on a previous condition, whereas a simple lock is an
explicit lock on a value.

In this example, the user now strikes a key or clicks a
mouse button to cause the navigator 46 to in turn cause the
SQL generator 56 to generate the next query. The SQL
generator 56 also listens for changes in the Query property
of DBQuery and so remembers the initial and any subse-
quent queries, FIG. 3. As can be seen, each query comprises
a specified set of attributes, relations and conditions. In the
present embodiment, it is only the conditions that are
changed from query to query. That, is the axes of the
multi-dimensional space are not affected, although it will be
seen that by extending the navigator interface and the
capability of the result merging object 42, it is possible to
enable the user to both add or subtract attributes from query
to query.

In the example, the SQL generator 56 generates the next
query by using the explicit condition provided for the
Department attribute and by obtaining the previously pro-
vided condition for the Security attribute. This query is used
to set the query attribute of DBQuery, which in turn pro-
duces another result set. The SQL generator may also use the
query to set a new value for the text entry field 38, so
confirming to the user the conditions used in the new query
and perhaps teaching the user how to formulate better or
more sophisticated initial queries.

The results merger object 42 detects the new result set and
adds it to its internal store of result sets. The results merger
object 42 knows the currently selected object and finds the
object which pointed to this object as its next object. The
next object pointer of this object is then changed to the first
object of the new result set. The next object pointer of the
last object of the new result is also set to the next object
pointer of the currently selected object and corresponding
changes are made to the previous pointers of the first object
of the new result set and the object which followed the
currently selected object to generate a combine result set in
which the new result set is linked. As the currently selected
object had a level of 1, the level for each object of the new
result set is set at 2. Finally, the currently selected object is
set as the first object of the new result set. (It should be seen
that the result merging object 42 could avoid using extra
linking attributes by reorganising its stored objects into a
navigation sequence.)

In this example, the Peter Curtis object has been dropped
from the list, although it will be seen that it is possible to
include the new result set after the currently selected object
and so retain this object within the combined result set.

The renderer 44 again detects the new result set and now
re-renders the combined result set, FIG. 4. In the present
example, only one object from result sets having levels
greater than 1 is displayed. So the renderer displays all level
1 objects, and as soon as it detects a level 2 object (it skips
the Peter Curtis object), it highlights this object with a
bounding box and a spin button 58 is displayed beside this
object. The renderer continues until it detects the next level
1 object and displays this and all subsequent level 1 objects
until either a level 2 object is detected or no more objects
remain. If within a sequence of level 2 objects, the renderer
detects a level 3 object, then this will be displayed in
preference to the previously displayed level 2 object, and so
on for further level results sets which have been generated
from result sets one level higher.

Once the result set is rendered, the navigator is responsive
to the user selecting the arrows of the spin button 58 to

US 6,850,932 B2

7

sequentially display within the bounding box, the objects of
the result set from which the displayed object was drawn.
When the user is at the first or last object of a lower level
result set, then the renderer goes to the upper or lower level
and allows the user to traverse this result set. (Alternatively,
the renderer can be set to wrap around this result set.)

FIGS. 4 and 9 illustrate the operating sequence and typical
navigation path. In this case, the user has submitted an initial
query, step 90, resulting in objects a . . . n. The result set is
displayed, step 92, and the user navigated to an object
between objects b and e where one or more conditions were
then set, step 94, resulting in a second result set comprising
objects ¢ to d. Again the results were displayed and the user
then navigated to an object between objects f and m where
further conditions were set resulting in a third result set
comprising objects g to 1. In the first embodiment, only the
currently selected object from within this third result set is
displayed between objects f and m. The user then sets a
further condition on an object of the third result set between
objects h and k, to generate a fourth result set comprising
objects1to j. When the user is traversing the fourth result set,
only the currently selected object from this set will be
displayed between objects f and m, until the user navigates
to either of objects h or k which will then be displayed
between objects f and m. If at any time the user finds the
desired object, step 96, the search can end, step 98.
Alternatively, if the rendered attributes need to be changed,
the user can re-formulate the query completely, by returning
to step 90. Nonetheless, as mentioned earlier, the navigator
user interface can be extended so that at step 94, the user can
add or delete attributes from a query without having to return
to step 90, and so losing all previous result sets generated
from the initial query.

In this manner, the user navigates along a virtual path
corresponding to any query without losing the results of any
query. From the point of view of the multidimensional
space, it is like the user is moving in a region around a
specific object by fixing or conditioning one or more axis
values for attributes. Even if the user does not fix or
constrain the navigation, this mechanism allows the user to
move within a set of objects close to the selected one. If the
metric of the space is defined so that objects that are close
to each other are logically related, then this mechanism
allows the user to look at similar entries in the database
without resubmitting a query.

The invention is particularly useful if the user is working
with a database containing multimedia data. In the embodi-
ment of FIGS. 7 and 8 the user is searching a catalogue of
cars for a red sports car. The user does not have a specific
brand in mind, nor a model. Again using a natural language
interface the following query might be submitted:

Look for all cars of any brand

With sporting special-body and

whose colour is any tonality of red.

The first result set comprises a number of objects and the
user navigates through the various objects to look at the
selected car models. Now, the user realises they like a
model, but wishes to look at others colours too, and possibly
also variants due to optional features. So the user locks the
brand, the series and the model, and uses the mouse to
navigate around the selected featured car to look at variants.

Note that in this case, even if colours and options infor-
mation is available from other tabbed panels that are not
currently visible, the user can move to other objects from the
“Model” panel. The user does not have to move to the
“Options” panel to select a different colour or other specific
options.

10

15

20

25

30

35

40

45

50

55

60

65

8

In the embodiments, the navigator 46 has been shown
separately from the renderer 44 to illustrate that the inven-
tion is independent of the type of renderer and navigator
used. As mentioned previously, a third form of renderer is
shown in FIG. 1. The renderer can be used in conjunction
with a navigator of the type used with the second
embodiment, where again only one object is displayed at a
time. Again selecting first, previous, next or last object
causes the object to be displayed with vertices 14 linking a
point to the attribute values for the object. A default selected
attribute is indicated by highlighting its associated vertex 12.
The user can select other attributes directly using the mouse
or by striking designated functions keys. When the user
wishes to condition a query, a mouse button or function key
can be used to indicate a lock or conditional lock. Again in
this case, the navigator interface can be extended to allow
the user to click and drag along a selected vertex so that the
attribute value for the locked attribute can be adjusted away
from the object’s attribute value in the result set.

In a variation of the renderer paradigm of FIG. 1, more
than one object can be displayed at the same time, by
distinguishing between respective object’s attribute values.
In this case, distinctive lines and markers are used to
distinguish different objects. Such a display may be confus-
ing where many objects are displayed and so might prefer-
ably be used alternatively or in conjunction with the renderer
of FIG. 1.

Notwithstanding the above renderer examples, it should
be seen that the navigator and renderer can be implemented
as a single class especially where the functionality of the two
are more interdependent.

It will therefore be seen that the invention allows a user
to navigate inside a database even when the user does not
have specific and well-defined criteria for searching. That is,
it allows the user to find objects by an heuristic approach,
starting navigation from an object that approximately
matches user’s requirements, and moving a little bit around
that object to capture similar objects. As the user finds
objects that look satisfactory, they are added to a “basket”
and with the user continuing their search. This approach is
very useful in analysis, data mining, investigations,
simulations, and other computer assisted activities where it
is not possible to specify “a priori” a clear set of require-
ments but the final result is the consequence of a continuous
interaction between the user and the machine.

It is noted that SQL has been further developed into
SQL3. SQLS3 includes objects extensions where, in addition
to the normal simple built-in types defined by SQL, complex
user-defined types may also be defined, and these types may
be used in the same way as built-in types. For example,
columns in relational tables may be defined as taking values
of user-defined types, as well as built-in types. The invention
is therefore not limited to databases in which attributes
contain simple data types.

What is claimed is:

1. A system cooperable with a database which is respon-
sive to a query to produce an associated report comprising
one or more objects, each object comprising a plurality of
attributes, said system comprising:

means for storing one or more reports from respective

database queries;

means, responsive to user interaction, for navigating

through objects composing said stored reports to select
an object;

means, responsive to user interaction, for selecting one or

more attributes of said selected object;

means, responsive to user interaction, for determining a
value of a selected attribute to be used as a condition in
a subsequent database query; and

US 6,850,932 B2

9

means, responsive to said selected attribute values, for

generating said subsequent database query.

2. The system of claim 1, means for rendering at least one
object from said stored reports.

3. A system as claimed in claim 2, wherein said deter-
mining means is responsive to a third user interaction to
determine an adjusted value of said selected object’s
selected attribute’s stored value as said condition.

4. A system as claimed in claim 2, wherein said renderer
means is adapted to display only a selected object.

5. A system as claimed in claim 2, wherein said renderer
means is adapted to initially display all objects from a stored
report associated with a first query.

6. A system as claimed in claim 5, wherein said renderer
means is adapted to display a selected object from a subse-
quent report in place of the object from the stored report
associated with the first query from which the conditions of
the subsequent associated query were determined.

7. A system as claimed in claim 5 wherein said renderer
means is adapted to display all objects from subsequent
reports in place of the objects from stored reports associated
with the previous queries from which the conditions of the
subsequent associated queries were determined.

8. A system as claimed in claim 1 wherein said determin-
ing means is responsive to a first user interaction to deter-
mine said selected object’s selected attribute’s stored value
as said condition.

9. A system as claimed in claim 1 wherein said determin-
ing means is responsive to a second user interaction to
determine said selected object’s attribute’s value in the
query associated with object as said condition.

10. A system as claimed in claim 1 wherein said renderer
is adapted to display said objects in a table.

11. A system as claimed in claim 1 wherein said storing
means is adapted to combine the objects from subsequent
reports into a list of objects to be navigated by said user.

12. A system as claimed in claim 1 wherein said naviga-
tion means is adapted to navigate to the first, previous, next
or last object in said list.

13. A system as claimed in claim 1 comprising means for
receiving user input corresponding to at least a portion of a
first query.

14. A system as claimed in claim 13 wherein said receiv-
ing means comprises one of a natural language interface, a
text entry field or a query-by-example analyzer.

15. A computer program product comprising computer
program code stored on a computer readable storage
medium for, when executed on a computing device, inter-
acting with a database report, the program code comprising
the system of claim 1.

16. A method operable with a database which is respon-
sive to a query to produce an associated report comprising
one or more objects, each object comprising a plurality of
attributes, the method comprising the steps of:

storing one or more reports from respective database

queries;

responsive to user interaction, navigating through objects

composing said stored reports to select an object;
responsive to user interaction, selecting one or more
attributes of said selected object;

responsive to user interaction, determining a value of a

selected attribute to be used as a condition in a subse-
quent database query; and

responsive to said selected attribute values, generating

said subsequent database query.

17. The method of claim 16, further comprising rendering
at least one object from said stored reports.

10

15

25

30

35

45

50

55

60

65

10

18. The method of claim 17, wherein said rendering is
adapted to display only a selected object.

19. The method of claim 17, wherein said rendering is
adapted to initially display all objects from a stored report
associated with a first query.

20. The method of claim 19, wherein said rendering is
adapted to display a selected object from a subsequent report
in place of the object from the stored report associated with
the first query from which the conditions of the subsequent
associated query were determined.

21. The method of claim 19, wherein said rendering is
adapted to display all objects from subsequent reports in
place of the objects from stored reports associated with the
previous queries from which the conditions of the subse-
quent associated queries were determined.

22. The method of claim 16, wherein determining said
value of said selected attribute used as a condition in a
subsequent query is responsive to a subsequent user inter-
action to perform a subsequent determination of said
selected object’s selected attribute’s stored value as said
condition.

23. The method of claim 16, wherein storing one or more
ports further comprises combining the objects from subse-
quent reports into a list of objects to be navigated by said
user.

24. The method of claim 16, wherein navigating through
objects composing said reports further comprises navigating
to the first, previous, next or last object in said list.

25. The method of claim 16, further comprising receiving
user input corresponding to at least a portion of a first query.

26. The method of claim 25, wherein receiving user input
comprises receiving one of a natural language interface, a
text entry field or a query-by-example analyzer.

27. A program operable with a database which is respon-
sive to a query to produce an associated report comprising
one or more objects, each object comprising a plurality of
attributes, wherein the program is embedded in a computer
readable medium and capable of causing a processor to
perform:

storing one or more reports from respective database
queries;

responsive to user interaction, navigating through objects
composing said stored reports to select an object;

responsive to user interaction, selecting one or more
attributes of said selected object;

responsive to user interaction, determining a value of a
selected attribute to be used as a condition in a subse-
quent database query; and

responsive to said selected attribute values, generating

said subsequent database query.

28. The program of claim 27, wherein the program is
further capable of causing the processor to perform render-
ing at least one object from said stored reports.

29. The program of claim 28, wherein said rendering is
adapted to display only a selected object.

30. The program of claim 28, wherein said rendering is
adapted to initially display all objects from a stored report
associated with a first query.

31. The program of claim 30, wherein said rendering is
adapted to display a selected object from a subsequent report
in place of the object from the stored report associated with
the first query from which the conditions of the subsequent
associated query were determined.

32. The program of claim 30, wherein said rendering is
adapted to display all objects from subsequent reports in
place of the objects from stored reports associated with the

US 6,850,932 B2

11

previous queries from which the conditions of the subse-
quent associated queries were determined.

33. The program of claim 27, wherein determining said
value of said selected attribute used as a condition in a
subsequent query is responsive to a subsequent user inter-
action to perform a subsequent determination of said
selected object’s selected attribute’s stored value as said
condition.

34. The program of claim 27, wherein storing one or more
ports further comprises combining the objects from subse-
quent reports into a list of objects to be navigated by said
user.

12

35. The program of claim 27, wherein navigating through
objects composing said reports further comprises navigating
to the first, previous, next or last object in said list.

36. The program of claim 27, further comprising receiv-
ing user input corresponding to at least a portion of a first
query.

37. The program of claim 36, wherein receiving user input
comprises receiving one of a natural language interface, a

10 text entry field or a query-by-example analyzer.

